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I Regular Questions

1. (20 points) True or False. If your answer is ”False”, please explain the reason.

(1) Q-learning operates strictly as (can only be) an off-policy algorithm while Mon-
te-Carlo Control operates strictly as (can only be) an on-policy algorithm.
False, Monte-Carlo Control can be off-policy.

(2) Let Qπ represent the action-value function. The optimal policy π∗ in the MDP
can be represented as argmaxa Q

π(s, a), ∀π ∈ Π (for any policy).
False, since π∗(a|s) = argmaxQ∗(s, a) = argmaxQπ∗

(s, a), not for any policy π.

(3) Let Qπ and V π represent the action-value function and state-value in the sta-
tionary Markov Decision Process (MDP). Let π∗ define the optimal policy. The
advantages function Aπ∗

(s, a) = Qπ∗
(s, a)− V π∗

(s) ≤ 0 for all state s and action a.
True

(4) Let Qπ and V π represent the action-value function and state-value in the station-
ary Markov Decision Process (MDP). Then we have both Qπ ≤ rmax

1−γ
and V π ≤ rmax

1−γ

where rmax = maxs,a r(s, a) and γ is the discounted factor.
True

(5) In the bandit problems, we choose the action i with the largest UCB values,

UCBi(t − 1, δ) = 1
Ni,t−1

∑
t′≤t−1 rt′1{at′ = i} +

√
2 log(1/δ)
Ni,t−1

for Ni,t−1 > 0. When the

confidence level δ becomes smaller, the exploratory level becomes larger, and the
action i with less visitation number Ni,t−1 will be more likely to be visited.
True
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2. (20 points) Multi-Armed Bandit (MAB).

Consider a multi-armed bandit with four arms, 1, 2, 3, and 4, each of which returns
a positive-valued reward (i.e., reward r ≥ 0). Imagine there have been 7 prior arm
pulls – 2 pulls for each of arms 1, 2, and 3, and 1 pull for arm 4.

Arms Pulls

1 2

2 2

3 2

4 1

(1) Given the total reward for arms 1, 2, 3, and 4 are 1, 2, 3, 2 and consider a ϵ-greedy
algorithm with ϵ = 0.4. What’s the probability of selecting each arm (1,2,3,4) in the
next time step?
0.1, 0.1, 0.1, 0.7

(2) Given the values of the rewards received up through that point, the UCB heuristic
(with δ = 0.5) says to pull arm 4 as the 8th arm pull. After the N=8 arm pulls the
relevant statistics are shown in the following table. What is the smallest and largest
values of the reward that arm 4 could ever have returned for its first pull?

Arms Pulls Total rewards

1 2 1

2 2 2

3 2 3

4 2 4

Hint: the UCB heuristic is:

UCBi(t− 1, δ) =


∞ , Ni,t−1 = 0 ,

1

Ni,t−1

∑
t′≤t−1

rt′1{at′ = i}+

√
2 log2(1/δ)

Ni,t−1

, Ni,t−1 > 0 ;

2.5-
√
2, 4
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3. (30 points) Trajectories, returns, and values. Consider the MDP below, in
which there are two states, X and Y , two actions, right and left, and the deter-
ministic rewards on each transition are as indicated by the numbers. Note that if
action right is taken in state X, then the transition may be either to X with a reward
of +2 or to Y with a reward of -2. These two possibilities occur with probabilities
2/3 (for the transition to X) and 1/3 (for the transition to state Y ).

Consider two deterministic policies:

π1(X) = left, π1(Y ) = right, (1)

π2(X) = right, π2(Y ) = right, (2)

(1) Show a typical trajectory (sequence of states, actions and rewards) from X for
policy π1 (Maximum length is 5):
X, left, 0, X, left, 0, X, left, 0, X, left, 0, X, left, 0

(2) Show a typical trajectory (sequence of states, actions and rewards) from X for
policy π2:
X, right, +2, X, right, -2, Y, right, 4, End

(3) Assuming γ = 0.5, what is the value of state Y under policy π1 (what is V
π1(Y )):

4

(4) Assuming γ = 0.5, what is the action-value of X, left under policy π1 (what is
Qπ1(X, left)):
0
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4. (30 points) Soft Bellman-Equation.

Let the soft Q-function be defined by:

Q∗
soft(st, at) = rt + Eπ∗,pT

[ ∞∑
h=1

γh
(
rt+h +H[π∗(at+h|st+h)]

)]
where pT dnotes the transition probability and H(π(a|s)) = −

∑
a π(a|s) log(π(a|s))

denotes the causal entropy.

Let the soft Value function be defined by:

V ∗
soft(st) = log

∑
a′

exp
(
Q∗

soft(st, a
′)
)

Let the policy be defined by:

π∗(a|s) = exp
(
Q∗

soft(s, a)− V ∗
soft(s)

)
Show that the above soft Q-function satisfies the soft Bellman equation:

Q∗
soft(st, at) = rt + γEpT [V

∗
soft(st+1)]

Hint: drive a representation of V ∗
soft from the first formula.

Proof.

Q∗
soft(st, at) = r(st, at) + Eπ∗,pT

[ ∞∑
h=1

γh
(
rt+h +H[π∗(at+h|st+h)]

)]
= r(st, at) + γEpT

[
H[π∗(at+1|st+1)] + Eπ∗ [Q∗

soft(st+1, at+1)]
]

(3)

Since the entropy H(π(a|s)) = −
∑

a π(a|s) log(π(a|s)), we have:

H(π(a|s)) + Eπ∗ [Q∗
soft(s, a)]

=
∑
a

π(a|s)
[
Q∗

soft(s, a)− log(π(a|s))
]

=
∑
a

π(a|s)
(
Q∗

soft(s, a)−Q∗
soft(s, a) + V ∗

soft(s)
)

=
(∑

a

π(a|s)
)
V ∗
soft(s)

= 1 · V ∗
soft(s) (4)

By plugging equation 4 to equation 3, we have:

Q∗
soft(st, at) = r(st, at) + γEpT [V

∗
soft(st+1)]
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